Using machine learning to increase treatment efficacy in mental health.

Meet the Team

About Us

The inability to predict any given individual's unique response to psychiatric treatment is a huge bottleneck to recovery from mental health conditions.
To address this challenge, we are creating a deep-learning based clinical decision tool for physicians to bring personalized medicine to psychiatry.
Initially, we will be focusing on treatments for depression, but we plan to scale Aifred to encompass all mental health conditions in order to amplify clinical utility. At its core, aifred is leveraging the collective intelligence of the scientific and medical community to bring better healthcare to all.
We are a proud official IBM Watson AI XPrize team, headquartered in Montreal, Canada.

Read more about us:

Deep Learning

Something unique to every machine learning company is the precise nature of their hyperparameter optimization and goals of their model. We will optimize aifred with the help of a distributed network of domain experts in psychiatry -- a collaboration unique to aifred health. We are implementing attention networks responsible for removing the “black-box” nature of neural networks. As well, we are analyzing the quality of model predictions, allowing both for greater interpretability of model decisions and the generation of new basic research questions, which are going to be unique to the data-set and optimization techniques we develop in-house. By training aifred on reliable datasets, we are able to ensure quality input to our model. De-identified patient outcomes will feed back into our neural networks to continuously improve aifred’s predictive power. Feature engineering is an important part of determining which inputs go into a network and varies how it’s done for every team- once again, this will be undertaken with the support of diverse group of experts we are recruiting.

Our Product

Treatment Prediction

The aifred solution makes use of innovative and powerful machine learning techniques predict treatment efficacy based on an array of patient characteristics.


Forget the blackbox! Our system will provide a report highlighting the most significant features that led to a treatment prediction.

Patient Data Tracking

Track patient symptoms and test results to monitor outcomes or make new predictions. Banks of standardized questionnaires, data visualization, scheduling software -- all of it modular and capable of being tailored to clinicians' needs.

Electronic Patient Record

Keep all important patient information in one place, and get insights using our analytics.

From Fundamental to Clinical


Our research team is conducting a series of systematic literature reviews to curate predictors of treatment response and side effect burden in depression. We are evaluating the state of precision psychiatry in domains including genetics, endocrinology, immunology, metabolic biochemistry, and neuroimaging, as well as examining the feasibility of including biomarker testing in routine clinical practice. The results of these reviews will serve to validate our model and inform the input feature space by integrating these multimodal biomarkers along with sociodemographic and clinical factors.


Clinical research is focused on validating our model in controlled and real-world conditions. We are designing three kinds of research trials indicated below. Safety is critical, so our clinical team, which includes two physicians, will be making sure to review our model’s predictions and ensure hard-coded safety features so that model treatment recommendations are safe. We are blazing the trail when it comes to clinical validation of deep-learning based clinical decision aids, and as such are investing heavily in the development of ethical principles to guide development and testing. In fact, ethical development is so important to us that we have created our own ethical framework, known as Meticulous Transparency, to guide our work. We also never store personally identifiable patient information, to protect patient privacy.


We strongly believe in the potential for artificial intelligence toenhance, but never replace physician decision-making. Following this principle, the model must be user-friendly and provide clinicians with features they want and need, so we must study the aifred solution’s integration into clinical workflow and any effects on clinician efficiency and doctor-patient interaction.

Open Label Trials

Safety and effectiveness of the model must be assessed in open-label trials where both clinicians and patients know when our model is being used. A group of physicians using our model will be compared to a group practicing usual care, and patient outcomes will be compared between the two.

Randomized Control Trial

After open label studies, we will conduct one or more randomized control trials, testing our model against a “dummy” model and against a “practice as usual” group. This will help us determine how efficacious the aifred solution is.

Are you a Researcher?

Data Portal


Dr. Gustavo Turecki, MD, PhD - Genetics, Dataset Access Content Expert
Dr. Marc Miresco, MD, MSc - External Psychiatry Services Content Expert
Dr. Leon Tourian, MD - Medical Education Content Expert
Dr. Thomas Milroy, MD - Electroconvulsive Therapy Content Expert
Dr. Gail Myhr, MDCM, Dip Psy, MSc, FRCP - Cognitive Behavioral Therapy Content Expert
Dr. Eduardo Chachamovitch, MD, PhD - Psychometrics, Mood disorders and Special Populations Content Expert
Dr. Marcelo Berlim, MD, MSc - Literature Review and Neuromodulation Content Expert
Dr. Howard Margolese, MD - Clinical Trial Expert
Dr. Mathieu Blanchette, PhD - Machine Learning Content Expert

Dr. Daniel Blumberger, MD, MSc, FRCPC - rTMS and Neuromodulation Content Expert
Dr. Sagar Parikh, MD - Guidelines, Best Practices, Cultural Safety Content Expert
Dr. Simone Vigod, MD, MSc, FRCPC - Guidelines, Best Practices, Cultural Safety Content Expert
Dr. Anthony J. Levitt, MD, MBBS, FCPC - Depression Treatment Optimization Content Expert
Dr. Roger S. McIntyre, MD, FRCPC - Psychiatry and Neuropharmacology Content Expert
Dr. Farooq Naeem, MD - CBT and Psychosis Content Expert

Tristan Sylvain - Machine Learning Content Expert
Dr. Margaux Luck - Machine Learning Content Expert

Dr. Wendell Wallach - Bioethics and AI Ethics Content Expert

Dr. Jonathan Roiser, PhD - Computational Psychiatry Content Expert
Dr. Oliver Robinson, PhD - Anxiety and Neuroimaging Content Expert

Dr. Charles F. Reynolds III, MD - Late Life Depression Content Expert

Dr. Randy Goebel, PhD - Machine Learning Content Expert

Get in touch!